EMERGENCY RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM REPORT 2011

South Carolina Department of Health and Environmental Control

Reporting Period

January 2011 to December 2011

Nuclear Response and Emergency Environmental Surveillance Section Division of Waste Assessment & Emergency Response Bureau of Land and Waste Management

TABLE OF CONTENTS

1.0 INTRODUCTION	1
2.0 PURPOSE	1
3.0 OBJECTIVES	1
4.0 METHODOLOGY	2
4.1 SAMPLE TYPE 4.2 SAMPLE FREQUENCY 4.3 SAMPLE ANALYSIS 4.4 SAMPLE LOCATIONS 4.5 ENVIRONMENTAL SAMPLING 4.6 STATISTICAL ANALYSIS	
$5.0~{ m RADIOLOGICAL~ENVIRONMENTAL~LABORATORY~COUNTING~SYSTEMS}$	4
5.1 GAS FLOW PROPORTIONAL COUNTERS	
6.0 QUALITY ASSURANCE ACTIVITIES	5
7.0 ENVIRONMENTAL CONSIDERATIONS AND DATA TREATMENT	6
8.0 PRESENTATION OF DHEC AIR MONITORING NETWORK RESULTS	7
8.1 OCONEE NUCLEAR STATION	12
9.0 INTERPRETATION OF DHEC AIR MONITORING NETWORK RESULTS	24
9.1 AIR PARTICULATE SAMPLING REGIME	
10.0 CONCLUSIONS	33
11.0 IMPROVEMENTS AND RECOMMENDATIONS	34
12.0 REFERENCES	35
APPENDICES	
APPENDIX A: DHEC AIR SAMPLE MONITORING DATA RESULTS SUMMARYAPPENDIX B: DHEC DIRECT RADIATION (TLD) MONITORING DATA RESULTS SUMM	

LIST OF FIGURES

Oconee	
8.1 Gross Beta Radioactivity for ONS (January 2011 thru December 2011)	
HB Robinson	
8.3 Gross Beta Radioactivity for HBRNS (January 2011 thru December 2011)	
VC Summer	
8.5 Gross Beta Radioactivity for VCSNS (January 2011 thru December 2011)	
Catawba	
8.7 Gross Beta Radioactivity for CNS (January 2011 thru December 2011)	
8.8 Direct Radiation (TLD) Readings for CNS (January 2011 thru December 2011)	23
LIST OF TABLES	
4.1 Predetermined Air Particulate Sampling Schedule	2
8.1 DHEC ONS Air Sampler Locations	
8.2 DHEC ONS TLD Locations	9
8.3 DHEC HBRNS Air Sampler Locations	13
8.4 DHEC HBRNS TLD Locations	13
8.5 DHEC VCSNS Air Sampler Locations	17
8.6 DHEC VCSNS TLD Locations	17
8.7 DHEC CNS Air Sampler Locations	
8.8 DHEC CNS TLD Locations	21
9.1 Sampling Time Span for EREM Program Reporting Periods	26
9.2 ONS Air Particulate Sampling Statistics	
9.3 HBRNS Air Particulate Sampling Statistics	
9.4 VCSNS Air Particulate Sampling Statistics	
9.5 CNS Air Particulate Sampling Statistics	
9.6 Direct Radiation (TLD) Exposure Statistics	
A-1 2006-2011 DHEC Air Particulate Sampling Data Results Summary	
B-1 2006-2011 DHFC Direct Radiation (TLD) Monitoring Data Results Summary	

LIST OF ILLUSTRATIONS

1	ONS Emergency Planning Zone Map with Air and TLD Sample Locations	7
2	HBRNS Emergency Planning Zone Map with Air and TLD Sample ocations	11
3	VCSNS Emergency Planning Zone Map with Air and TLD Sample Locations	15
4	CNS Emergency Planning Zone Map with Air and TLD Sample Locations	19

LIST OF ACRONYMS (used in this report)

CFM Cubic feet per minuteCNS Catawba Nuclear StationCP&L Carolina Power & Light

CR Cross Road

DHEC Department of Health and Environmental Control

EPZ Emergency Planning Zone

EREM Emergency Radiological Environmental Monitoring

ES Environmental Sampling
HBRNS HB Robinson Nuclear Station

HPGe High Purity Germanium

Jct Junction
KG Kaleidograph
LPM Liters per minute
mR/yr Milliroengten per year
mrem/yr Millirem per year

NORM Naturally Occurring Radioactive Material

NPP Nuclear Power Plant

NRC Nuclear Regulatory Commission

NREES Nuclear Response and Emergency Environmental Surveillance

ONS Oconee Nuclear Station
Picocuries per cubic meter

QAPP Quality Assurance Project Plan

RR Railroad

SOP Standard Operating Procedure
TLD Thermoluminescent Dosimeter

USEPA US Environmental Protection Agency

VCSNS VC Summer Nuclear Station

1.0 INTRODUCTION

The State of South Carolina is home to four commercial nuclear power reactor stations. They are located in Darlington, York, Oconee and Fairfield Counties. These commercial stations, licensed by the Nuclear Regulatory Commission (NRC), are mandated to conduct routine environmental monitoring to measure any off-site impacts to the public and the environment from facility discharges. In addition to the monitoring conducted by the commercial stations, the South Carolina Department of Health and Environmental Control's (DHEC) Nuclear Response and Emergency Environmental Surveillance Section (NREES) provides periodic radiological environmental monitoring around these commercial facilities. This Emergency Radiological Environmental Monitoring (EREM) project report describes the type and frequency of sample collection, as well as quality control, reporting methods and equipment used.

The EREM project provides DHEC with an environmental baseline for several parameters when collecting air samples in the event of a radioactive material release at one of the commercial nuclear stations. These pre-established sampling locations would be used to assist DHEC in determining the extent of contamination from an event, as well as evaluating the radiological population dose.

During this reporting period, a Japanese earthquake and resulting tsunami on March 11, 2011 damaged the Daiichi Nuclear Plant in Fukushima, Japan. This event caused an ongoing release of radioactive materials into the environment.

On March 18, 2011, SCDHEC began an enhanced environmental radiological sampling program in response to the Daiichi release. Results of this sampling, to date, indicate that minute amounts of radioactive elements that are consistent with those released from the Daiichi reactors or fuel pools were present in the South Carolina environment.

In all cases, where radionuclides could be detected, the concentrations were a small fraction of the allowable limit and the resulting dose for their respective exposure pathways are miniscule. As anticipated, results for the most recent samples collected confirm a decrease in detectable concentrations over time. A complete set of SCDHEC analyses is available through NREES..

2.0 PURPOSE

The purpose of the EREM project is to provide emergency environmental surveillance monitoring of commercial nuclear stations in South Carolina and to determine if there is a potential for offsite impact from each station's activities to the environment and human health. The project also serves to establish baseline trends for several radiological parameters as a referenced sampling network in the event of an accidental release.

Findings documented in this environmental report will be published and made available for public dissemination.

3.0 OBJECTIVES

The DHEC NREES pursues three primary objectives:

- 1. To collect and analyze radiological environmental samples via the air pathway to provide background data on natural radioactivity and/or man-made sources of radioactivity in the vicinity of South Carolina's commercial nuclear facilities
- 2. To establish baseline data to discern and adequately assess any data anomalies and/or trends that may be indicative of an accidental release during nuclear plant operations to the environment and its impact on public health.
- 3. Develop an annual environmental report summarizing the results of these activities.

4.0 METHODOLOGY

The NREES staff is responsible for all aspects of collection and transportation of samples to appropriate laboratories for analysis. This section provides specific information pertaining to sampling methods, sample type, sample frequency, sample analyses, and sampling locations.

4.1 SAMPLE TYPE

Air particulate samples are collected monthly and thermoluminescent dosimeters (TLDs) are collected quarterly. Air particulate samples consisting of charcoal cartridges and particulate filters are used to detect any airborne radiological contamination. TLDs are collected to measure radiation exposure from the facilities. These samples will provide the basis for monitoring the atmospheric exposure pathway.

4.2 SAMPLE FREQUENCY

The air sampling media are deployed and collected one week per month at each commercial nuclear station. The selection of the sampling week is random. However, for future comparison, the initial start days of the week, have been predetermined to align DHEC's sampling regime, with that of the SC nuclear stations. The predetermined sample collection schedule is as follows:

Table 4.1 Predetermined Air Particulate Sampling Schedule

Nuclear Stations	Collection Schedule
Oconee	Mondays
HB Robinson	Mondays
Catawba	Tuesdays
VC Summer	Wednesdays

TLDs are collected on a standard quarter.

4.3 SAMPLE ANALYSIS

The DHEC Radiochemistry Laboratory in the Division of Analytical & Radiological Environmental Services provides the air particulate sample analyses for this project. The samples are analyzed for alpha, beta, and gamma-emitting radionuclides using standard EPA approved methodology (EPA 900.0 and EPA 901.1). The TLDs are sent to a National Voluntary Laboratory Accreditation Program (NVLAP) accredited laboratory for processing.

4.4 SAMPLE LOCATIONS

Sample locations are based primarily on local population centers and annual prevailing wind directions. Air particulate samples are collected at two locations around each commercial nuclear station.

Twelve (12) TLDs are strategically placed around each nuclear station. One duplicate TLD is co-located with an existing TLD location per nuclear station. In addition, background and transit (trip blank) TLDs are used and read along with each set of field TLDs to estimate local site natural background and transit exposures, respectively. The background TLDs are placed in the field in an area with no prevailing wind relative to the nuclear station of interest. A control TLD has been used to determine the radiation exposure received during storage and transit to and from Global Dosimetry Solutions, Inc. Until transport, this control TLD is kept in a shielded container at DHEC. Some TLD locations denoted in the Tables in Section 8.0 are not part of the original NRC/DHEC sampling network and subsequently, no historical data exists for these locations. Maps depicting sampling locations and descriptions for each commercial nuclear facility are also provided in Section 8.0.

4.5 ENVIRONMENTAL SAMPLING

In the context of EREM, environmental sampling (ES) is the collection and analysis of ambient air samples for radiological parameters that would confirm any significant

release from a facility. The application of ES usually involves two stages: baseline sampling and routine sampling. Baseline (pre-operational) sampling is performed to establish a reference 'environmental signature', and routine (operational) sampling is subsequently performed to obtain data that can be compared for consistency with the established baseline environmental signature and the declared operations.

4.6 STATISTICAL ANALYSIS

Statistical analysis and data reduction of the sampling data are performed. For discussion purposes, the mean, maximum and minimum values of the data results are used to assess the impact of any planned or accidental release of radioactive materials in the environment.

5.0 RADIOLOGICAL ENVIRONMENTAL LABORATORY COUNTING SYSTEMS

The counting systems used by DHEC Radiochemistry Laboratory for radiological analysis are outlined below.

5.1 GAS FLOW PROPORTIONAL COUNTERS

The following systems are used for the analysis of gross alpha and beta in water, air filters, soil, and vegetation, as well as radium 226, radium 228, technetium-99 and uranium in water:

A Tennelec LB5100 gas flow proportional counting system that uses a 2.25-inch detector having an 80 microgram/cm² detector window with an automatic changer with a capacity of 50 samples.

Three Protean gas flow proportional counting systems each using a 2.25-inch detector. They have an $80 \text{ microgram/cm}^2$ detector window with an automatic changer with a capacity of 50 samples.

A Protean WPC9604 multichannel gas flow proportional counting system using eight 2.25-inch detectors. It has 80 microgram/cm² detector windows with the capability of simultaneously counting eight samples.

P-10 gas, which is a mixture of 90% argon and 10% methane, is also used.

5.2 HIGH PURITY GERMANIUM DETECTORS (HPGE)

These systems are used for the analysis of gamma emitting radionuclides in water, soil, vegetation, milk, swipes, air filters and air cartridges.

The fixed laboratory system consists of six HPGe detectors from various vendors. These instruments have relative efficiencies of 40%, 42%, 54%, 57%, 90% and 95%. It utilizes Canberra's PROcount ESP software with an Open VMS platform for data acquisition and analysis.

6.0 QUALITY ASSURANCE ACTIVITIES

Samples are collected according to the methods described in DHEC's Environmental Investigations Standard Operation Procedures (SOPs) and Quality Assurance Manual Section 18: Radiological Monitoring. The appropriate chains of custody are used to ensure the integrity and quality of the samples. DHEC's sampling personnel are trained on the proper methods for sample collection.

The quality assurance reviews for the sampling network are conducted and documented in the following:

South Carolina Department of Health and Environmental Control (DHEC), *Standard Operating Procedure for Analysis of Environmental Samples for Gross Alpha/Beta Activity*, Section VI-N, Bureau of Environmental Services, July 2005.

South Carolina Department of Health and Environmental Control (DHEC), *Standard Operating Procedure for Analysis of Environmental Samples for Gamma Emitting Radionuclides*, Section VI-L, Bureau of Environmental Services, July 2005.

South Carolina Department of Health and Environmental Control (DHEC), *Section 3*. *Quality Assurance Procedures, Special Study Plans and Approvals* in <u>Quality Assurance Management Plan For South Carolina Department Of Health And Environmental Control</u>, Bureau of Environmental Services, Rev. 2, May 2006.

South Carolina Department of Health and Environmental Control (DHEC), Section 19.6. Chain-of-Custody Procedures for Radiological Samples in Quality Assurance Management Plan For South Carolina Department Of Health And Environmental Control, Bureau of Environmental Services, Rev. 2, May 2006.

South Carolina Department of Health and Environmental Control (DHEC), *Section 18. Radiological Monitoring* in <u>Quality Assurance Management Plan For South Carolina Department Of Health And Environmental Control</u>, Bureau of Environmental Services, Rev. 2, May 2006.

South Carolina Department of Health and Environmental Control (DHEC), Section 4. Basic Training for New Employees Who Will Perform Field Activities in Quality

<u>Assurance Management Plan for South Carolina Department of Health and Environmental Control, Bureau of Environmental Services, Rev. 2, May 2006.</u>

Global Dosimetry Solutions, Inc., *Quality Assurance Manual*, Rev. 22, in <u>Quality Assurance Plan</u>, January 2008.

Data received from the DHEC Radiochemistry Laboratory goes through an internal verification and validation process and a review and validation process by designated NREES staff to ensure compliance with DHEC SOPs for handling and analyzing samples. The direct radiation (TLD) monitoring data undergoes a similar process.

7.0 ENVIRONMENTAL CONSIDERATIONS AND DATA TREATMENT

Significant Environmental Considerations

Conforming to the purpose and objectives of the emergency environmental monitoring program, the data analysis results per SC nuclear station are discussed in this section. The presentation of the data results reflects whether or not any significant environmental consideration had occurred during the period of January 2011 through December 2011. "Significant environmental consideration" is defined as any increasing or decreasing in levels of radioactivity (outliers) due to field equipment malfunctions, presence of isotopic anomalies, any deviation from historical or recent trends, and/or human errors such as calculation errors, sampling errors, maintenance/unusual plant event, etc.

For any data anomaly that posed an environmental consideration, an attempt to verify and explain the reason(s) behind the anomaly is pursued by examining the specific nuclear facility environmental report/data for that time period, reviewing seasonal and historical trends, checking equipment operability during that time frame, and identifying any possibility of simple human error. In addition, statistical analysis is applied to all the data results. Figures 1 through 8 are used as visual aids to identify an anomaly, if any, which would be classified as a significant environmental consideration by definition in this report.

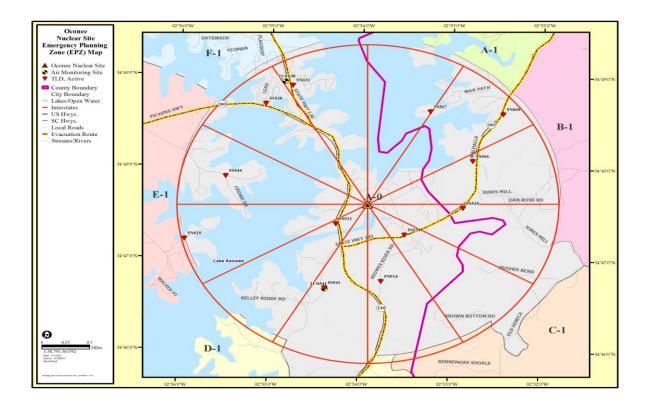
Data Fluctuations (Variability) in Air Particulate Sample Analysis

One commonality among the air sampling data results is the normal environmental tendencies of data fluctuation. Based on the trends of relevant data, the occurrence of data fluctuation in the gross beta particle activity at each facility is due to seasonal influences, difference in locations of instrumentation, shifts in weather patterns, and different settings of airflow rates per instrument.

2011 Emergency Radiological Environmental Monitoring Program Report

Treatment of Broken Air Samplers, Discrepancies in Calculations, and Sample Handling Errors

Particulate retention on air samples varies. This variation is directly related to the fluctuation of data as seen in air monitoring figures in Section 8.


For any missing TLDs, the interpolation method was used, based on the information from the previous years' data.

8.0 PRESENTATION OF THE DHEC AIR SAMPLING NETWORK RESULTS

Figures 8.1 through 8.8 are used to identify any anomaly that would warrant further environmental investigations.

8.1 OCONEE NUCLEAR STATION

The Oconee Nuclear Station (ONS) is a three unit pressurized water reactor complex with each nuclear reactor having an electrical output of about 922 megawatts. Oconee Nuclear Station is operated by Duke Power Company as part of the Keowee-Toxaway Project. The reactor complex is located 13 km northeast of Seneca, SC and about 40 km West of Greenville, SC. Lake Keowee was formed to serve the reactors and other power facilities of the Keowee-Toxaway Project. Unit 1 achieved initial criticality on April 19, 1973 and began commercial operations on May 6, 1973.

Illustration 1

Oconee Nuclear Station Emergency Planning Zone Map with Air and TLD Sample Locations

Table 8.1 DHEC ONS Air Sampler Locations

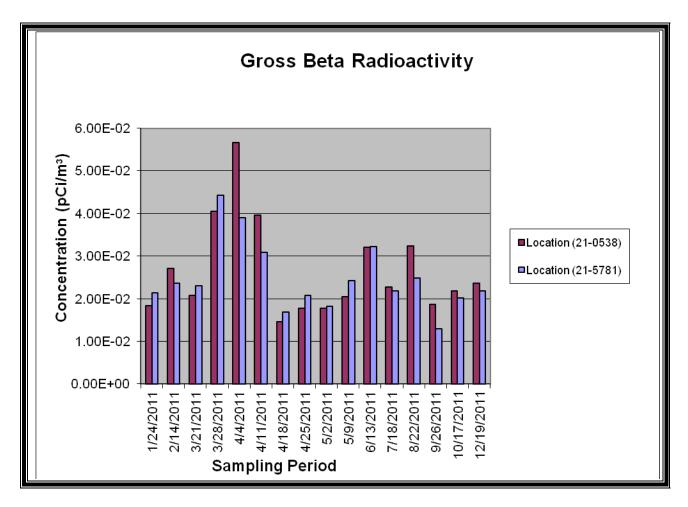

Sample Location	Location Description
21-0538	Air Sampler at Keowee Subdivision waste treatment plant off SC Hwy #130 (1.8 miles WNW of ONS).
21-5781	Air sampler at the Duke Employee Recreation Area off SC #130. (0.5 miles west of ONS).

Table 8.2 DHEC ONS TLD Locations

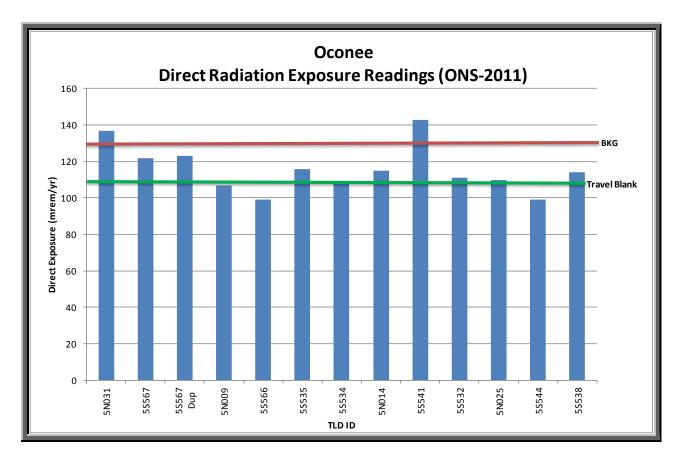
	Sample Location	Location Description
*	5N031	McConnells Dive Services on Rt. 130
	5S567	Warpath Landing
*	5N009	On SC#183 past small barn on Utility Pole
	5S566	Hwy. 183, 0.3 mile North of CR# 160
	5S535	From bridge on Hwy. 183 go east 1/5mi
	5S534	From bridge on SC# 183 2 nd rd on rt
*	5N014	SW on rt.6, on tree at dirt pull off
	5S541	CR# 15, 0.7 mile South of Hwy. 130
	5S532	0.6 mi. SSW on right side of gate on Hwy 130
*	5N025	Go 0.3 mi on Ellenburg Rd on Utility Pole
*	5S544	Jet CR's 574 & 201 across from Church
	5S538	Keowee Key Guard Station

^{*} No NRC/DHEC historical data for this TLD Location

Figure 8.1. DHEC Airborne Radiation Monitoring Data Oconee Nuclear Station (ONS)

ENVIRONMENTAL CONSIDERATIONS: ANOMALIES/OUTLIERS

ONS—Air Samplers


1.Significant Increasing/Decreasing levels of radioactivity: Gross Beta activity increases between the last week of March and the second week of April.

2. Equipment Malfunctions: NONE

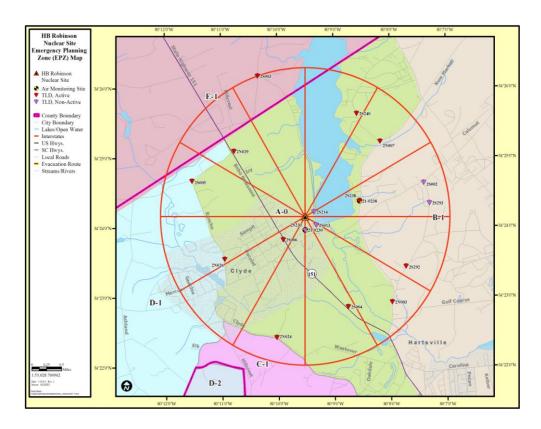
3. Weather Conditions: NONE

- **4. Deviation from historical and/or recent trends**: Beta activity increases coincide with the disaster at the Fukushima Daiichi Nuclear Plant in Japan.
- 5. Human errors (Calculation errors, sample handling errors): NONE

Figure 8.2. DHEC Direct Radiation Monitoring Data Oconee Nuclear Station (ONS)

ENVIRONMENTAL CONSIDERATIONS: ANOMALIES/OUTLIERS

ONS—Thermoluminescent Dosimeters (TLD)


1. Significant Increasing/Decreasing levels of radioactivity:

Three (3) TLD readings (5S541, 5N031, and 5S567) are above the control TLD exposure.

- 2.Missing TLD(s): Sample ID 5N031 during the 2nd Quarter 2011
- 3. Weather Conditions: NONE
- 4.Deviation from historical and/or recent trends: NONE
- 5. Human errors (Calculation errors, sample handling errors): NONE

H.B. ROBINSON NUCLEAR STATION

The H. B. Robinson Nuclear Station (HBRNS) has a pressurized water reactor designed to produce 739 megawatts of gross power. The power reactor, operated by Progress Energy Corporation, is located in Darlington County, 4.5 miles WNW of Hartsville, SC. The reactor is located at Lake Robinson, which was impounded in the late 1950s to furnish cooling water for the existing fossil (coal) fuel power generating plant, HB Robinson Unit No. 1. Lake Robinson was formed by impounding Black Creek that flows southeastward from the site through Darlington and Florence counties and joins the Pee Dee River. The unit was declared to be in commercial operation on March 7, 1971.

<u>Illustration 2</u>
HB Robinson Nuclear Station Emergency Planning Zone Map with Air and TLD Sample

Locations

Table 8.3 DHEC HBRNS Air Sampler Locations

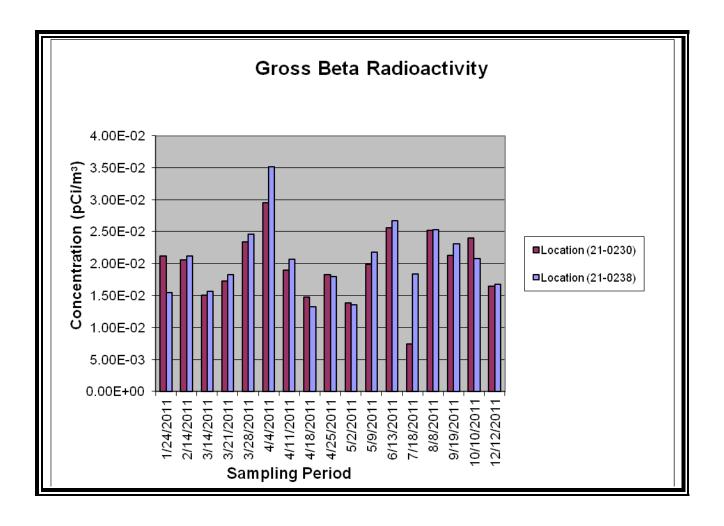
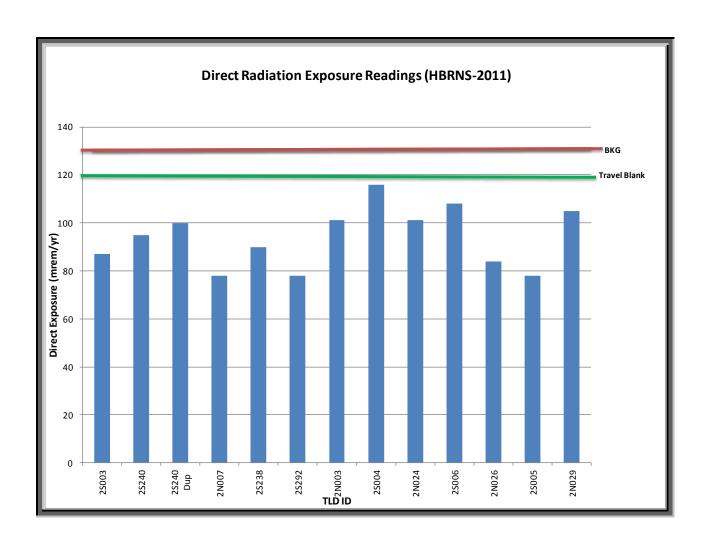

Sample Location	Location Description
21-0230	In front of Visitors Center at H.B. Robinson (0.2 mile S H.B. Robinson)
21-0238	Off Darlington county #39, first left above Johnson's Marina. North of
	Darlington County #23 (0.8 miles E of H.B. Robinson).

Table 8.4 DHEC HBRNS TLD Locations

	Sample Location	Location Description
*	2S003	Chesterfield CR# 172 at RR
	2S240	Easterling's Landing
*	2N007	N. on Rt 39, 0.3 mi to the inters w/Rt737
	2S238	Johnson's Landing Air Sampler
	2S292	Intersection of CR# 824 and Beulaland
*	2N003	On Utility pole by house at 1025 New Market Rd
		On SC 151 South from HBR at substation. On power pole (2.0 mile
	2S004	Southeast of HBR).
*	2N024	N. on Clyde Rd across from Fessional Dr
	2S006	Pine Ridge Rescue Squad Bldg
*	2N026	On Rt. 761 go 0.5 mi to Utility Pole
*	2S005	Darlington Co. #176 – 2.1mi WNW HBR
*	2N029	On Rt. 171, 0.8 mi from intersection with Hwy 151

^{*} No NRC/DHEC historical data for this TLD Location

Figure 8.3 DHEC Airborne Radiation Monitoring Data HB Robinson Nuclear Station (HBRNS)

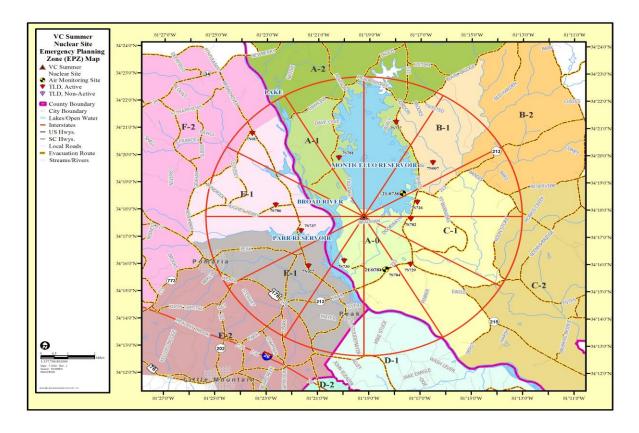


ENVIRONMENTAL CONSIDERATIONS: ANOMALIES/OUTLIERS

HBRNS—Air Samplers

- 1. Significant Increasing/Decreasing levels of radioactivity: Gross Beta activity increases during the last week of March and first week of April.
- 2. Equipment Malfunctions: NONE
- 3. Weather Conditions: NONE
- **4. Deviation from historical and/or recent trends:** Increases coincide with the disaster at Fukushima Daiichi Nuclear Plant in Japan.
- 5. Human errors (Calculation errors, sample handling errors): NONE

Figure 8.4 DHEC Direct Radiation Monitoring Data HB Robinson Nuclear Station (HBRNS)



ENVIRONMENTAL CONSIDERATIONS: ANOMALIES/OUTLIERS HBRNS—Thermoluminescent Dosimeters (TLD)

- 1. Significant Increasing/Decreasing levels of radioactivity: NONE
- 2. Missing TLD(s): Sample ID 2N007 during 2nd Quarter 2011.
- 3. Weather Conditions: NONE
- 4. Deviation from historical and/or recent trends: NONE
- 5. Human errors (Calculation errors, sample handling errors): NONE

VC SUMMER NUCLEAR STATION

Virgil C. Summer Nuclear Station (VCSNS) has a 900-megawatt Westinghouse pressurized water reactor located adjacent to the Monticello Reservoir near Jenkinsville, SC, and is operated by South Carolina Electric and Gas (SCE&G). The site is approximately 26 miles north of Columbia, SC. VC Summer Nuclear Station achieved initial criticality October 22, 1982, reached 50% power December 12, 1982 and 100% power June 10, 1983 following a steam generator feedwater modification.

VC Summer Nuclear Station Emergency Planning Zone Map with Air and TLD Sample Locations

Table 8.5 DHEC VCSNS Air Sampler Locations

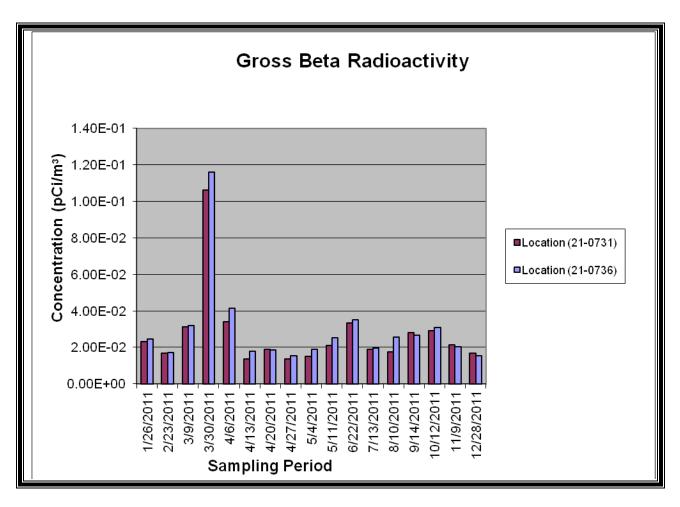
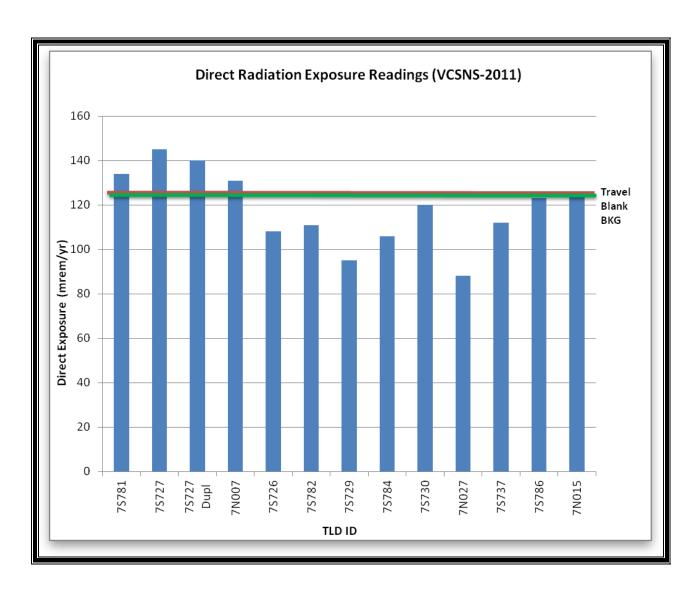

Sample Location	Location Description
21-0736	Go North on SC #215, turn left on Fairfield Co #224, take second dirt
	road left to gate at end, park, walk past to air sampler (2.0 miles NE of
	VCSNS).
21-0731	Turn off SC215 onto Fairfield county #311 (plant entrance) toward
	VCSNS, turn left on first dirt road on left to fenced Garden Plot area (1.0
	miles ESE of VCSNS

Table 8.6 DHEC VCSNS TLD Locations

	Sample Location	Location Description
	7S781	VCSNS North Gate
*	7S727	Monticello Community
*	7N007	On Rt 359 go 0.4 mi
*	7S726	Whitehall Elementary School
	7S782	Hwy. 215, 0.5 mile North of Lake Access Rd.
		CJ Shealy residence, Fairfield CR#213 just W of Junction with SC
	7S729	#215 on pole by flower bed.
	7S784	CR# 16 0.4 mile West of VCSNS Training Center
	7S730	Parr Village
*	7N027	On Rt.28 on utility pole at top of hill
	7S737	Cannon's Creek Landing
	7S786	CR# 9, 0.5 mile West of CR# 28
*	7N015	On utility pole at inter. of Rt 97 & Rt 28

^{*} No NRC/DHEC historical data for this TLD Location

Figure 8.5. DHEC Airborne Radiation Monitoring Data VC Summer Nuclear Station (VCSNS)



ENVIRONMENTAL CONSIDERATIONS: ANOMALIES/OUTLIERS

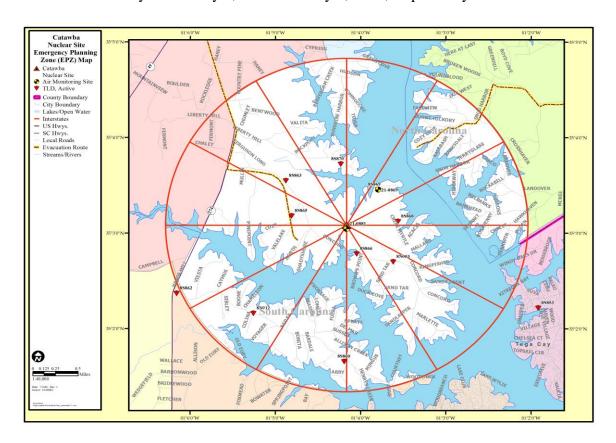
VCSNS—Air Samplers

- 1. Significant Increasing/Decreasing levels of radioactivity: Gross Beta activity increases between the last week of March and the first week of April.
- 2. Equipment Malfunctions: NONE
- 3. Weather Conditions: NONE
- **4. Deviation from historical and/or recent trends:** Increased levels of Beta activies coincide with the accident at Fukushima Daiichi Nuclear Plant in Japan.
- 5. Human errors (Calculation errors, sample handling errors): NONE

Figure 8.6. DHEC Direct Radiation Monitoring Data VC Summer Nuclear Station (VCSNS)

ENVIRONMENTAL CONSIDERATIONS: ANOMALIES/OUTLIERS

VCSNS—Thermoluminescent Dosimeters (TLD)


1.Significant Increasing/Decreasing levels of radioactivity: Five (5) TLD readings (7S781,

7S727, 7N007, 7S786 and 7N015) are above the Background TLD exposure.

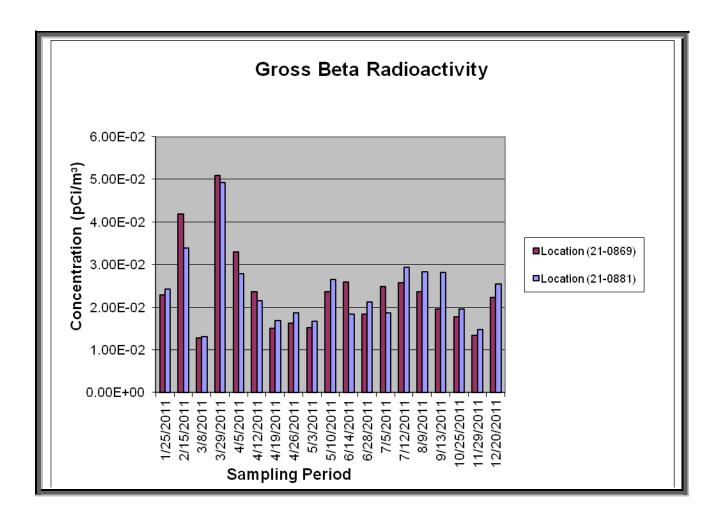
- 2. Missing TLD(s): NONE
- 3. Weather Conditions: NONE
- 4. Deviation from historical and/or recent trends: NONE
- 5. Human errors (Calculation errors, sample handling errors): NONE

8.4 CATAWBA NUCLEAR STATION

Catawba Nuclear Stations (CNS) is a two-unit facility located on the shore of Lake Wylie in York County, South Carolina, operated by Duke Energy. Each of the two units employs a pressurized water reactor nuclear steam supply system furnished by Westinghouse Electric Corporation. Each generating unit is designed to produce a net electrical output of approximately 1145 megawatts. Units 1 and 2 achieved initial criticality on January 7, 1985 and May 8, 1986, respectively.

Illustration 4

Catawba Nuclear Station Emergency Planning Zone Map with Air and TLD Sample locations

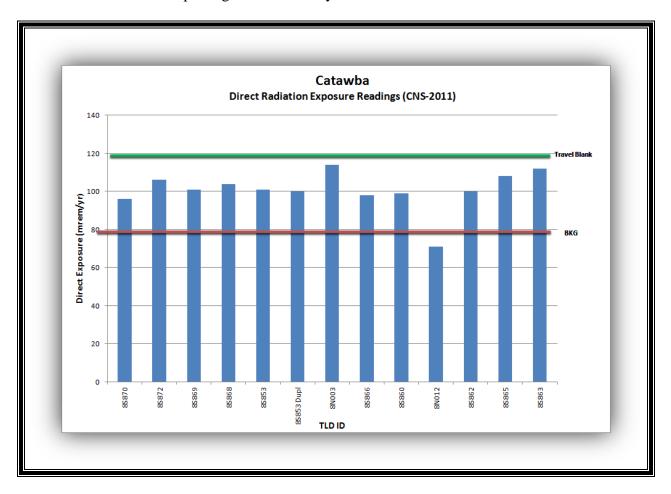

Table 8.7 DHEC CNS Air Sampler Locations

Sample Location	Location Description
21-0869	Located at Catawba Environmental Monitoring Station on Bluebird Lane.
	(Distance Direction from 0.5 miles NE of CNS).
21-0881	At air sampler at Catawba Nuclear Station meteorlogical station, on site.
	(Distance Direction from 0.3 miles SW of CNS).

Table 8.8 DHEC CNS TLD Locations

Sample Location	Location Description
8S870	End of Liberty Hill Rd.
8S872	At Buster Boyd Bridge on pole in T-Bones Parking Lot
8S869	Located at Catawba Environmental. Monitoring Station on Bluebird Lane.
8S868	On Paradise St. sign at intersection with Crepe Myrtle off old Concord Rd.
8S853	On a tree right corner at Windjammer Park in Tega Cay.
8N003	Concord & Sand Tar Rd's
8S866	On discharge canal gate
	Located on utility pole 2.2 mi E. on junct with 274 on York Co. #1081 at
8S860	Martha's Vineyard Road.
8N012	Allison Creek Rd & Colina Rd
	Located on utility pole south of Allison Creek Church on SC 274 (2.2
8S862	miles SW of CNS).
8S865	On guide wire at Vale Lake Road.
	Located at RR crossing sign west of junction of RR tracts and York Co.
8S863	#1132.

Figure 8.7. DHEC Airborne Radiation Monitoring Data Catawba Nuclear Station (CNS)



ENVIRONMENTAL CONSIDERATIONS: ANOMALIES/OUTLIERS

CNS—Air Samplers

- **1. Significant Increasing/Decreasing levels of radioactivity:** Gross Beta activity increases during February, and between the last week of March and the second week of April.
- 2. Equipment Malfunctions: NONE
- 3. Weather Conditions: NONE
- **4. Deviation from historical and/or recent trends: :** Increased levels of Beta activies coincide with the disaster at Fukushima Daiichi Nuclear Plant in Japan.
- 5. Human errors (Calculation errors, sample handling errors): NONE

Figure 8.8. DHEC Direct Radiation Monitoring Data Catawba Nuclear Station (CNS)

ENVIRONMENTAL CONSIDERATIONS: ANOMALIES/OUTLIERS

CNS—Thermoluminescent Dosimeters (TLD)

- 1. **Significant Increasing/Decreasing levels of radioactivity**: Only of the TLDs is not above background
- **2. Missing TLD(s): Sample ID 8S872** was found missing during 2nd and 4th Quarters 2010.
- 3. Weather Conditions: NONE
- 4. Deviation from historical and/or recent trends: NONE
- 5. Human errors (Calculation errors, sample handling errors): NONE

9.0 INTERPRETATION OF THE DHEC AIR SAMPLING NETWORK RESULTS

The air particulate samples are collected to determine alpha, beta, gamma-emitting radioactive materials concentrations. The environmental dosimetry (TLD) monitoring data are examined to measure the external exposure (dose) from environmental radiation levels as a secondary monitoring system. These results are compared to their respective data captured in previous DHEC Emergency Radiological Environmental Monitoring reports. A more detailed discussion of the results is presented in the following sections.

9.1 AIR PARTICULATE SAMPLING REGIME

Radioanalysis of Air Particulate Samples

Air Filters----Gross Alpha and Gross Beta Analyses

The air filters are analyzed for gross alpha and gross beta radioactivity. Gross measurements are used as a method to screen samples for relative levels of radioactivity with no reference to the specific radionuclide source.

Gross Alpha Measurement

Based on the historical gross alpha data results, the trends are consistent and below gross beta levels. However, the NRC does not require monitoring of alpha radiation around commercial nuclear power plants. Therefore, the gross alpha data results are not presented in this report.

Gross Beta Measurement

Gross beta data are examined for central tendencies and measurement extremes for each SC commercial nuclear power plant. Graphical representations of the detailed gross beta data results are displayed in Section 8 of this report. Historically, most of the observed environmental levels are below 0.03 pCi/m³. This value simply notes the trend of the data collected from the emergency air particulate sampling network around the SC commercial nuclear facilities.

DHEC follows the guidance of the US Environmental Protection Agency (USEPA) for screening for gross beta radiation. The USEPA, through their Radnet program, compares nationwide sample results against certain screening levels for various media. A screening level is a guideline used by the USEPA to decide whether or not to determine the identity and activity of radionuclides in the sample and does not correspond to a regulatory limit. For gross beta radiation, a screening value of 1 pCi/m³ is used. If this value is exceeded, a gamma analysis of the air filter is performed to identify the specific radionuclide source. None of the samples collected exceeded the 1 pCi/m³ screening level.

Air Cartridges----Gamma Analysis

Gamma analysis is performed on samples from air cartridges from the sample locations around the SC commercial nuclear power plants. The specific radionuclides analyzed are Be-7, K-40, Mn-54, Co-58, Co-60, I-131, Cs-134, Cs-137, Ra-226, Ac-228, Th-234 and U-235. The gamma analysis results show the levels of these radionuclides, with the exception of K-40, are at background with no discernable trends deviating from past analyses. Thus, the results are less than the analytical Minimum Detectable Activity (MDA) after decay correction. MDA values are not presented in this report due to its variation per sample per radionuclide.

Potassium-40 (K-40) appears periodically in the cartridge samples. Its presence in the samples can be contributed to natural processes of K-40 occurring in the environment. Based on the data trends of the K-40 detected in the samples and a review of literature, DHEC staffs believe that K-40 is not influenced by variations in environmental levels. Therefore, it is not considered further in this report.

Comparative Statistics of the Gross Beta Radioactivity Results

Statistical analysis is applied to the gross beta activity data results and presented in tabular form below in Tables 9.2 through 9.5. The tables show the average, minimum and maximum gross beta concentrations (pCi/m³) for each reporting period. It is noted that each reporting period denotes a different sampling time span. Table 9.1 reflects the time span covered during each reporting period.

Table 9.1 Sampling Time Span for EREM Program Reporting Periods

Reporting Periods	Actual Time Span		
2004-2006	July 2004 through June 2006		
2006-2007	July 2006 through June 2007		
2007-2008	July 2007 through December 2008		
2009	January 2009 through December 2009		
2010	January 2010 through December 2010		
2011	January 2011 through December 2011		

All future reporting periods will reflect a standard calendar year.

 Table 9.2
 Oconee Nuclear Station

	Table 9.2 ONS Air Particulate Sampling Statistics										
Gross Beta Concentration	Station 21-0538										
(pCi/m ³)	2004-2006	2006-2007	2007-2008	2009	2010	2011					
Average	0.0233	0.0152	0.0172	0.0159	0.0226	0.0266					
Maximum	0.168	0.0228	0.0363	0.0293	0.0338	0.0567					
Minimum	0.007	0.0082	0.0083	0.00754	0.0149	0.0146					
Stand. Dev.	0.0353	0.0054	0.0067	0.00642	0.0065	0.0112					
Gross Beta	Station 21-541/ Station 21-5781										
Concentration (pCi/m ³)	2004-2006	2006-2007	2007-2008	2009	2010	2011					
Average	0.0142	0.0162	0.0168	0.0233	0.0242	0.0248					
Maximum	0.0198	0.0226	0.0253	0.0518	0.0459	0.0442					
Minimum	0.007	0.0098	0.0050	0.0119	0.0150	0.0129					
Stand. Dev.	0.0031	0.0041	0.0048	0.0107	0.0087	0.0081					

From Table 9.2 above, gross beta concentrations for Oconee Nuclear Station during 2006-2011 are within reasonable limits relative to background radiation levels, based on the average concentrations. Thus, the average concentrations are under the normal environmental trend of 0.03 pCi/m³. The maximum concentration level of 0.0567 pCi/m³ was at sampling location 21-0538. However, all the gross beta concentrations are well below the USEPA screening value of 1 pCi/m³. Therefore, the airborne releases from the Oconee Nuclear Station are within normal operating conditions and do not contribute to any elevated levels of radioactive particulates in the air.

 Table 9.3
 HB Robinson Nuclear Station

Table 9.3 HBRNS Air Particulate Sampling Statistics											
Gross Beta Concentration	Station 21-0230										
(pCi/m ³)	2004-2006	2006-2007	2007-2008	2009	2010	2011					
Average	0.0170	0.0163	0.0198	0.0179	0.0242	0.0196					
Maximum	0.0238	0.0223	0.0364	0.0257	0.0342	0.0295					
Minimum	0.0086	0.0128	0.0102	0.0110	0.0012	0.0075					
Stand. Dev.	0.0037	0.0031	0.0058	0.0053	0.0170	0.0054					
Gross Beta Concentration			Station	21-0238							
(pCi/m ³)	2004-2006	2006-2007	2007-2008	2009	2010	2011					
Average	0.0156	0.0132	0.0203	0.0180	0.0272	0.0205					
Maximum	0.0238	0.0207	0.0327	0.0251	0.0478	0.0351					
Minimum	0.0120	0.0073	0.0104	0.0113	0.0153	0.0132					
Stand. Dev.	0.0031	0.0035	0.0063	0.0054	0.0087	0.0056					

From Table 9.3 above, gross beta concentrations for HB Robinson Nuclear Station during 2006-2011 are within reasonable limits relative to background radiation levels, based on the average concentrations. Thus, the average concentrations are under the normal environmental trend of 0.03 pCi/m³. The maximum concentration level of 0.0351 pCi/m³ was at sampling location 21-0238,in 2011, although there was a higher concentration in 2010. However, all the gross beta concentrations are well below the USEPA screening value of 1 pCi/m³. Therefore, the airborne releases from the HB Robinson Nuclear Station are within normal operating conditions and do not contribute to any elevated levels of radioactive particulates in the air.

 Table 9.4
 VC Summer Nuclear Station

Table 9.4 VCSNS Air Particulate Sampling Statistics											
Gross Beta Concentration	Station 21-0736										
(pCi/m ³)	2004-2006	2006-2007	2007-2008	2009	2010	2011					
Average	0.0121	0.0174	0.0172	0.0205	0.0218	0.0270					
Maximum	0.0232	0.0265	0.0270	0.0359	0.0387	0.1060					
Minimum	0.0006	0.0110	0.0084	0.0073	0.0148	0.0136					
Stand. Dev.	0.0061	0.0041	0.0044	0.0076	0.0064	0.0214					
Gross Beta Concentration	Station21-0784/Station 21-0731										
(pCi/m³)	2004-2006	2006-2007	2007-2008	2009	2010	2011					
Average	0.0173	0.0186	0.0153	0.0162	0.0225	0.0295					
Maximum	0.0245	0.0272	0.0207	0.0239	0.0491	0.1160					
Minimum	0.0130	0.0126	0.0075	0.0089	0.0154	0.0153					
Stand. Dev.	0.0023	0.0042	0.0034	0.0046	0.0093	0.0235					

From Table 9.4 above, gross beta concentrations for VC Summer Nuclear Station during 2006-2011 are within reasonable limits relative to background radiation levels, based on the average concentrations. Thus, the average concentrations are under the normal environmental trend of 0.03 pCi/m³. The maximum concentration level of 0.1160 pCi/m³ was at sampling location 21-0731. However, all the gross beta concentrations are well below the USEPA screening value of 1 pCi/m³. Therefore, the airborne releases from the VC Summer Nuclear Station are within normal operating conditions and do not contribute to any elevated levels of radioactive particulates in the air.

 Table 9.5
 Catawba Nuclear Station

Table 9.5 CNS Air Particulate Sampling Statistics									
Gross Beta	Station 21-0869								
Concentration (pCi/m³)	2004-2006	2006-2007	2007-2008	2009	2010	2011			
Average	0.0146	0.0154	0.0168	0.0153	0.0236	0.0235			
Maximum	0.041	0.0215	0.0242	0.0193	0.0371	0.0509			
Minimum	0.00213	0.0119	0.0092	0.0080	0.0153	0.0128			
Stand. Dev.	0.00744	0.0032	0.0052	0.0036	0.0066	0.0096			
Gross Beta	Station 21-0881								
Concentration (pCi/m³)	2004-2006	2006-2007	2007-2008	2009	2010	2011			
Average	0.0155	0.0165	0.0199	0.0181	0.0249	0.0238			
Maximum	0.0587	0.0245	0.0248	0.0208	0.0375	0.0492			
Minimum	0.0070	0.0061	0.0105	0.0115	0.0155	0.0131			
Stand. Dev.	0.0277	0.0047	0.0035	0.0034	0.0067	0.0083			

From Table 9.5 above, gross beta concentrations for Catawba Nuclear Station during 2006-2011 are within reasonable limits relative to background radiation levels, based on the average concentrations. Thus, the average concentrations are under the normal environmental trend of 0.03 pCi/m³. The maximum concentration level of 0.0509 pCi/m³ was at sampling location 21-0869. However, all the gross beta concentrations are well below the USEPA screening value of 1 pCi/m³. Therefore, the airborne releases from the Catawba Nuclear Station are within normal operating conditions and do not contribute to any elevated levels of radioactive particulates in the air.

9.2 DIRECT RADIATION (TLD) MONITORING REGIME

Radioanalysis of Thermoluminescent Dosimeters

Complementary to the air particulate sampling regime, NREES measures environmental background radiation through a network of off-site TLDs placed about 1 meter above the ground in twelve (12) wind sectors to monitor for external dose. These devices measure direct, penetrating gamma radiation originating from natural background, as well as any contribution from nuclear power station operations.

The scientific principle behind the function of TLDs is that when a crystals contained in the detector is exposed to any penetrating gamma radiation, the electrons are trapped in an excited state until the crystals are heated to a very high temperature. This released energy of excitation, is emitted in the form of visible light. These electrons remain in a high-energy state at normal ambient temperature until processing. The analytical laboratory of Global Dosimetry Solutions, Inc processes the TLDs. When processed, background exposures are not subtracted. Only element, reader and fade corrections are made.

The control TLD is maintained in a secure, unshielded area in the Bureau of Land and Waste Management facility, Stern Building, Columbia, SC. Average annual exposure rates (in milliroentgen/year) are determined to confirm that environmental radiation levels in the surrounding area are at background levels and that no adverse radiation exposure to the public occurs. The control comparison values will be used to assess current environmental radiation levels around each commercial nuclear power plant. The average annual control TLD dose values are 122 mR. Any exposure rate values above the control TLD value will be addressed in this report.

Comparative Statistics of the Direct Radiation (TLD) Results

Statistical analysis is also applied to the TLD monitoring data results and displayed in Table 9.6 below for further comparison.

Table 9.6 Direct Radiation (TLD) Exposure Statistics

	_	_	_	_	
Exposure mar/year	Oconee TLD	HB Robinson VC Summer TLD		Catawba TLD	
		2006-2007			
Minimum	um 104 80 84		84	100	
Maximum	152	116	152	124	
Average	123	98	122	107	
Std Deviation	13.55	11.75	20.71	8.38	
		2007-2008			
Minimum	108	80	92	100	
Maximum	140	116	152	120	
Average	119	98	124	107	
Std Deviation	Std Deviation 9.24		17.84	6.57	
		2009			
Minimum	111	83	94	88	
Maximum	147	123	148	125	
Average	123	101	125	108	
Std Deviation	10.90	13.77	16.58	9.30	
		2010			
Minimum	102	64*	94	55**	
Maximum	139	123	158	124	
Average	119	102	125	104	
Std Deviation	10.48	15.63	17.84	17.03	
		2011			
Minimum	99	78	88	71****	
Maximum	143	116	145	114	
Average	116	94***	118	101	
Std Deviation	13.05	12.48	17.01	10.46	

*TLD **Sample 2S005** missing during the 2nd Quarter 2010

** TLD **Samples 8S872** missing during the 2nd and 4th Quarter 2010

***TLD **Sample 2N007** missing during the 2nd Quarter 2011

****TLD **Sample 8N012** missing during the 4th Quarter 2011

Thermoluminescent dosimeters(TLDs)

Oconee Nuclear Plant

Based on Table 9.6 above for Oconee Nuclear Station, the annual TLD exposure rates in the environment are consistent with the previous reporting periods. The average TLD exposure rate is 116 mrem/year and at a maximum exposure level of 143 mrem/yr. The average value is within bounds of the control TLD exposure of 129 mrem/yr. The maximum value exceeds the control TLD exposure. There are three TLD locations (5N031, 5S567, and 5S541) where the average readings mirrored the trends identified in previous reports. This suggests that this area contains higher concentrations levels of naturally occurring radioactive materials (NORMs) than that of the area where the control TLD is located. The NORMs issue for this area was confirmed in a groundwater screening initiative conducted by DHEC in 2008. DHEC continues to evaluate this area surrounding the Oconee Nuclear Station.

HB Robinson Nuclear Plant

Based on Table 9.6 above for HB Robinson Nuclear Station, the annual TLD exposure levels in the environment are consistent with the previous reporting periods. The average TLD exposure rates are 94 mrem/yr with a maximum exposure level of 116 mrem/yr, averaging a missing TLD, these exposure levels are within the bounds of the control TLD exposure values of 129 mrem/yr.

VC Summer Nuclear Station

Based on Table 9.6 above for VC Summer Nuclear Station, the annual TLD exposure rates in the environment are shown to be consistent with the previous reporting periods. The average TLD exposure levels are 118 mrem/yr with a maximum TLD exposure level of 145 mrem/yr. The average TLD exposure level is bounded by the control TLD exposure level of 129 mrem/yr; whereas the maximum TLD exposure level exceeds the control TLD exposure.

The reason for the slightly elevated levels of radioactivity is unknown. The area surrounding the VC Summer facility is known to have naturally occurring radioactive materials (NORMs). The NORM material in this area presents no adverse exposure to the public.

Catawba Nuclear Station

Based on Table 9.6 above for Catawba Nuclear Station, the annual TLD exposure levels in the environment are consistent with the previous reporting periods. The average TLD exposure levels are 101 mrem/yr with a maximum exposure level of 114 mrem/yr. These exposure levels are within the bounds of the control TLD exposure values of 129 mrem/yr.

.

The majority of the TLD exposures presented in this report are consistently lower than the control TLD exposure. Thus, TLD monitoring network indicated that there is no adverse impact of elevated radiation exposure to the public from the SC commercial nuclear stations.

10.0 CONCLUSIONS

Discussion

Air Particulate Sampling Regime

Results, when compared to the 2010 EREM Annual Report, indicate the air particulate sampling data, did show some indication of elevated radiation levels. Most of the gross beta particle activity falls below the natural trend (0.03 pCi/m³) as determined from previous studies. When slight increases or decreases occur, equipment malfunctions and seasonal influences are considered to be the causes. However, this particular year's increases, coincided with the accident at Fukushima Daiichi Nuclear Plant in Japan. However, all of the gross beta concentrations are well below the USEPA screening value of 1 pCi/m³. The results of the gamma analysis show no detections with the exception of naturally occurring Potassium-40 in most of the samples within expected range.

Direct Radiation (TLD) Monitoring Regime

Given more background references, the TLD readings reflected similar trends as previous years. TLD samples taken around the SC commercial nuclear stations do not indicate any elevated radiation exposure above the control TLD exposure value with the exception of a few results from TLDs located adjacent to the VC Summer and Oconee nuclear stations. The slight increases in radiation detected are unknown. However, anomalies in TLD exposure levels for previous reporting years indicates the possibility of high concentrations of naturally occurring radioactive materials in these environments.

2011 Emergency Radiological Environmental Monitoring Program Report

Overall Monitoring Network

The results of this EREM report for the period of January 2011 to December 2011 indicates that no public health or environmental radiological impact is detected. The findings of this report are also reflective of the last EREM report published in 2010. Therefore, the same conclusion can be drawn: All offsite samples show no analytical results attributable to nuclear power plant operations and data fluctuations are in the range of natural background radiation.

11.0 IMPROVEMENTS AND RECOMMENDATIONS

No new recommendations or improvements are identified for this reporting period.

REFERENCES

- 12.1 Hi-Q Environmental Products Co., Cabinet Mounted Pump Continuous Duty Constant Flow Air Sampling System, CMP Series, Rev. 1/8/04.
- 12.2 US Department of Energy (DOE), Grand Junction Office, *Moab Environmental Air Monitoring Sampling and Analysis Plan*, GJO-MOA 1.6-1, March 2003.
- 12.3 US Department of Energy (DOE), National Nuclear Security Administration, Nevada Operations Office, *FRMAC Monitoring and Analysis Manual: Radiation Monitoring and Sampling*, DOE/NV/11718-181-VOL.1, March 2002.
- 12.4 US Environmental Protection Agency, Manual of Protective Action Guides and Protective Actions for Nuclear Incidents, EPA-400-R-92-001, May 1992.
- 12.5 South Carolina Department of Health and Environmental Control (DHEC), *South Carolina Nuclear Facility Monitoring*, 1993 Annual Report, Bureau of EQC Laboratories, September 1994.
- 12.6 South Carolina Department of Health and Environmental Control (DHEC), Section 3. Quality Assurance Procedures, Special Study Plans and Approvals in Quality Assurance Management Plan For South Carolina Department Of Health And Environmental Control, Bureau of Environmental Services, Rev. 2, May 2006.
- 12.7 South Carolina Department of Health and Environmental Control (DHEC), *Section 19.6. Chain-of-Custody Procedures for Radiological Samples* in Quality Assurance Management Plan For South Carolina Department Of Health And Environmental Control, Bureau of Environmental Services, Rev. 2, May 2006.
- 12.8 South Carolina Department of Health and Environmental Control (DHEC), *Section 18. Radiological Monitoring* in <u>Quality Assurance Management Plan For South Carolina Department Of Health And Environmental Control</u>, Bureau of Environmental Services, Rev. 2, May 2006.
- 12.9 South Carolina Department of Health and Environmental Control (DHEC), Section 4. Basic Training for New Employees Who Will Perform Field Activities in Quality Assurance Management Plan For South Carolina Department Of Health And Environmental Control, Bureau of Environmental Services, Rev. 2, May 2006.
- 12.10 Duke Energy Corporation, *Annual Radiological Environmental Operating Report*, Catawba Nuclear Station, Unit 1 and Unit 2, May 2007.
- 12.11 Duke Energy Corporation, *Annual Radiological Environmental Operating Report* 2006, Oconee Nuclear Station, Unit 1 and Unit 2, May 2007.

- 12.12 Progress Energy Carolinas, Inc., *Annual Radiological Environmental Operating Report* 2006, HB Robinson Nuclear Station, Unit 2, May 2007.
- 12.13 Progress Energy Carolinas, Inc., *Annual Radiological Environmental Operating Report* 2006, VC Summer Nuclear Station, Unit 2, April 2007.
- 12.14 The Weather Underground, Inc., *History of Clemson*, *SC*, <u>www.wunderground.com</u>, accessed May 13, 2008.
- 12.15 The Weather Underground, Inc., *History of Columbia*, *SC*, <u>www.wunderground.com</u>, accessed May 13, 2008.
- 12.16 Eisenburg, Merril and Gesell, Thomas. Environmental Radioactivity: From Natural, Industrial and Military Sources, 4th Ed., Academic Press, 1997.
- 12.17 South Carolina Department of Health and Environmental Control (DHEC), <u>Radiation Surveillance Data</u>, Contract Data for Environmental Protection Agency, Division of Radiological Health, Report No. 72-B, December 1972.
- 12.18 South Carolina Department of Health and Environmental Control (DHEC), <u>Radiation Surveillance Data</u>, Contract Data for Environmental Protection Agency, Division of Radiological Health Report No. 72-4, June 1973.
- 12.19 South Carolina Department of Health and Environmental Control (DHEC), <u>Radiation Surveillance Data</u>, Contract Data for Environmental Protection Agency, Division of Radiological Health Report No. 72-1, September 1972.
- 12.20 South Carolina Department of Health and Environmental Control (DHEC), <u>Radiation Surveillance Data</u>, Contract Data for Environmental Protection Agency, Division of Radiological Health Report No. 72-3, March 1973.
- 12.21 South Carolina Department of Health and Environmental Control (DHEC), DHEC groundwater and surface water screening project for radioactive constituents around SC nuclear power plants, Oct 2008.

APPENDIX A

DHEC AIR SAMPLE MONITORING DATA RESULTS SUMMARY

TABLE A	TABLE A-1. 2011 DHEC AIR PARTICLE SAMPLING DATA RESULTS SUMMARY										
	Gross Beta Radioactivity (pCi/m³)										
	Oconee		Catawba		HB Robinson		VC Summer				
FREQUENCY	(21-0538)	21-05781	(21-0869)	(21-0881)	(21-0238)	(21-0230)	(21-0736)	(21-0731)			
Jan-11	1.83E-02	2.13E-02	2.29E-02	2.42E-02	1.55E-02	2.12E-02	2.47E-02	2.31E-02			
Feb-11	2.71E-02	2.37E-02	4.19E-02	3.39E-02	2.12E-02	2.06E-02	1.72E-02	1.70E-02			
Mar-11	2.08E-02	2.31E-02	1.28E-02	1.31E-02	1.57E-02	1.51E-02	3.19E-02	3.14E-02			
	4.05E-02	4.42E-02	5.09E-02	4.92E-02	1.83E-02	1.73E-02	1.16E-01	1.06E-01			
	NDC	NDC	3.29E-02	2.78E-02	2.46E-02	2.34E-02	NDC	NDC			
Apr-11	5.67E-02	3.90E-02	2.37E-02	2.15E-02	3.51E-02	2.95E-02	4.13E-02	3.40E-02			
	3.96E-02	3.09E-02	1.51E-02	1.68E-02	2.07E-02	1.90E-02	1.80E-02	1.38E-02			
	1.46E-02	1.68E-02	1.63E-02	1.86E-02	1.32E-02	1.48E-02	1.86E-02	1.89E-02			
	1.78E-02	2.07E-02	1.52E-02	1.67E-02	1.80E-02	1.83E-02	1.53E-02	1.36E-02			
May-11	1.77E-02	1.82E-02	2.36E-02	2.65E-02	1.35E-02	1.38E-02	1.91E-02	1.51E-02			
	2.04E-02	2.42E-02	2.59E-02	1.84E-02	2.18E-02	1.99E-02	2.53E-02	2.09E-02			
Jun-11	3.21E-02	3.22E-02	1.83E-02	2.12E-02	2.67E-02	2.56E-02	3.50E-02	3.32E-02			
Jul-11	2.27E-02	2.19E-02	2.49E-02	1.86E-02	1.84E-02	7.46E-03	1.96E-02	1.90E-02			
	NDC	NDC	2.57E-02	2.93E-02	NDC	NDC	NDC	NDC			
Aug-11	3.24E-02	2.49E-02	2.37E-02	2.83E-02	2.53E-02	2.52E-02	2.57E-02	1.75E-02			
Sep-11	1.87E-02	1.29E-02	1.95E-02	2.81E-02	2.31E-02	2.13E-02	2.65E-02	2.81E-02			
Oct-11	2.18E-02	2.02E-02	1.78E-02	1.96E-02	2.08E-02	2.40E-02	3.09E-02	2.92E-02			
Nov-11	1.74E-02	1.42E-02	1.34E-02	1.48E-02	1.48E-02	1.68E-02	2.05E-02	2.13E-02			
Dec-11	2.37E-02	2.18E-02	2.23E-02	2.55E-02	1.68E-02	1.65E-02	1.53E-02	1.67E-02			

NDC-No Data Collected from these sites as a result of scaling back the frequency of Air Sampling, due to the incident at Fukushima Daiichi Nuclear Plant in Japan.

APPENDIX B

DHEC DIRECT RADIATION (TLD) MONITORING DATA RESULTS SUMMARY

TAI	BLE B-1.	B-1. 2011 DHEC DIRECT RADIATION (TLD) READINGS								
Average Annual Exposures										
Cata	wba	VC Summer		Oco	Oconee		binson			
Location	mrem/yr	Location	mrem/yr	Location	mrem/yr	Location	mrem/yr			
8 S 870	96	7S781	134	5N031	137	2S003	87			
8S872	106	7S727	145	5S567	122	2S240	95			
8 S 869	101	7N007	131	5N009	107	2N007	102			
8 S 868	104	7S726	108	5S566	99	2S238	90			
8S853	101	7S782	111	5S535	116	2S292	78			
8N003	114	7S729	95	5S534	108	2N003	101			
8 S 866	98	7S784	106	5N014	115	2S004	116			
8 S 860	99	7S730	120	5S541	143	2N024	101			
8N012	101	7N027	88	5S532	111	2S006	108			
8S862	100	7S737	112	5N025	110	2N026	84			
8S865	108	7S786	123	5S544	99	2S005	78			
8S863	112	7N015	125	5S538	114	2N029	105			

No control exposures have been subtracted, and only element, reader and fade corrections have been made.